selected bond distances and angles in Table 2.* Projections of the structure in both the bc and the ac planes are shown in Fig. 1.

Related literature. The crystal structure of Mn_3 -(CH₃COO)₆(H₂O)₄.2H₂O is closely related to that of the octahydrate Mn_3 (CH₃COO)₆(H₂O)₄.8H₂O which was previously reported as $Mn(CH_3COO)_2.4H_2O$ by Bertaut, Duc, Burlet, Burlet, Thomas & Moreau (1974). The layers comprise $Mn_3(OAc)_6(H_2O)_4$ units in both structures. In manganese acetate octahydrate, the two O atoms in all of the acetate groups

coordinate to two different Mn^{II} ions, whereas in the dihydrate only two thirds of the acetate groups are bridged in this way. The rest of the acetates coordinate to two Mn^{II} ions through only one O atom, O(1). In addition, the interlayer distance is larger (9.7 *versus* 8.2 Å) in $Mn_3(CH_3COO)_6(H_2O)_{4.8}H_2O$ because there are twelve more water molecules per unit cell in the interlayer region than in the structure of the dihydrate.

Support of this study by the National Sciences Council is gratefully acknowledged.

References

BERTAUT, E. F., DUC, T. Q., BURLET, P., BURLET, P., THOMAS, M. & MOREAU, J. M. (1974). Acta Cryst. B30, 2234–2236.

SHELDRICK, G. M. (1990). SHELXTL-Plus, version 4. Siemens Analytical International Inc., Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 1736–1738

Structure of 1,7-Bis(benzimidazol-2-yl)-2,6-dithiaheptanecopper(I) Perchlorate at 233 K

BY R. CARBALLO AND A. CASTIÑEIRAS*

Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

AND W. HILLER AND J. STRÄHLE

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Germany

(Received 21 December 1990; accepted 21 February 1991)

Abstract. [Cu(C₁₉H₂₀N₄S₂)]ClO₄, $M_r = 531 \cdot 52$, monoclinic, C2/c, $a = 14 \cdot 166$ (4), $b = 17 \cdot 571$ (5), $c = 9 \cdot 942$ (2) Å, $\beta = 118 \cdot 08$ (2)°, $V = 2183 \cdot 3$ Å³, Z = 4, $D_x = 1 \cdot 617$ g cm⁻³, Cu K α , $\lambda = 1 \cdot 54056$ Å, $\mu = 46 \cdot 1$ cm⁻¹, F(000) = 1088, T = 233 K, the final R value is 0.053 for 1039 significant [$I > 3\sigma(I)$] reflections. The Cu¹ ion is only linearly coordinated by two pyridine N atoms of the benzimidazole groups of the BBDHP ligand [Cu—N = 1.908 (4) Å]. The thioether S atoms do not have significant bonding contacts with the copper ion [Cu—S = 2.876 (2) Å]. The cation and perchlorate anion are linked by a hydrogen bond.

Experimental. A colourless single crystal of approximate dimensions $0.10 \times 0.15 \times 0.10$ mm was sealed in a capillary. Because the crystals decompose at

0108-2701/91/081736-03\$03.00

room temperature all X-ray investigations were performed at 233 K. The systematic absences observed suggested the space group to be either Cc or C2/c. For calculations the centrosymmetric space group C2/c was chosen, and later confirmed by successful refinement of the structure. In the final full-matrix least-squares refinement all non-H atoms were assigned anisotropic temperature parameters; each atom of the perchlorate anion was allowed an individual isotropic temperature factor. The disordered perchlorate anion was assumed to occupy two alternative orientations related by a crystallographic twofold axis, and their multiplicities were also refined. resulting in an occupancy of 0.5. The calculated H-atom positions were used only for structure factor calculations with B_{iso} fixed at 4 Å². More details of the intensity data collection, structure solution and refinement are listed in Table 1. Final atomic coordinates are given in Table 2, selected distances and

01/081736-03\$03.00 © 1991 Inter

© 1991 International Union of Crystallography

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54005 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} To whom correspondence should be addressed.

Table 1. Data-collection and structure-refinement parameters

Table 3. Selected distances (Å) and angles (°)

r		Cu-N(1) 1.908 (4)	Cu—S 2:876 (2)
Crystal shape	Prism	S-C(8) 1-799 (7)	S—C(9) 1.805 (8)
Diffractometer	Enraf-Nonius CAD-4	N(1)—C(1) 1-395 (9)	N(1)-C(7) 1-328 (9)
Method of intensity measurement	ω/θ	N(2)-C(6) 1.37 (1)	N(2)—C(7) 1-349 (6)
Number and θ range () of reflections for lattice parameters	25, 8-36	$\begin{array}{ccc} C(1) & -C(2) & 1.41 & (1) \\ C(2) & -C(3) & 1.383 & (9) \end{array}$	C(1)—C(6) 1·380 (8) C(3)—C(4) 1·399 (9)
Method used for absorption correction	DIFABS (Walker & Stuart, 1983)	C(4)—C(5) 1·36 (1)	C(5)—C(6) 1·390 (9)
Min., max. and ave. absorption correction Max. $(\sin/\theta)/\lambda$ (Å ⁻¹)	0.646, 1.415 and 1.010 0.59	C(?)—C(8) 1·49 (2)	C(9)—C(10) 1.509 (9)
Range of h, k and l	$0 \rightarrow 16, 0 \rightarrow 20 \text{ and } -11 \rightarrow 11$	S—Cu—S' 81-38	7) S—Cu—N(1) 79-5 (2)
Standard reflections	314, 170	S-Cu-N(1') 111-3 (2) N(1)-Cu-N(1') 166-3 (2)
Interval (h)	1, no intensity variation	C(8)—S—C(9) 98·0 (4) $C(1)-N(1)-C(7) = 104.8 (4)$
Total reflections measured, θ range ()	1967; 6-65	C(6)—N(2)—C(7) 107.6 (6	N(1)-C(1)-C(2) 129.6 (5)
Number of unobserved reflections	643, 71 systematic absences included	N(1)-C(1)-C(6) 109.5 (7	C(2)—C(1)—C(6) 121.0 (6)
Number of unique reflections, R _{int}	1825, 0.045	C(1)C(2)C(3) 115-8 (6) $C(2)-C(3)-C(4) = 122.5(9)$
Number of observed reflections	1039 where $l > 3\sigma(l)$	C(3)—C(4)—C(5) 121.9 (7	C(4)—C(5)—C(6) 116.4 (6)
Method used to solve structure	Direct methods	N(2)-C(6)-C(1) 106.0 (6	$N(2)-C(6)-C(5) = 131\cdot3(6)$
Use of F or F^2 in LS refinement	F	C(1)—C(6)—C(5) 122.7 (8) N(1)-C(7)-N(2) 112.2 (6)
Method of locating H atoms	Calculated in idealized positions with $d(C-H) = 0.95$ Å	N(1)-C(7)-C(8) 126.4 (5 S-C(8)-C(7) 113.0 (5	$ \begin{array}{cccc} N(2) & -C(7) - C(8) & 121.4 \ (6) \\ S - C(9) - C(10) & 110.5 \ (4) \\ \end{array} $
Weighting scheme	$1/\sigma^2$	C(9)—C(10)—C(9') 117·2 (8	
Parameters refined	145		
R	0.053	Anion	
wR	0.023	Cl(1) - O(11) 1.38 (2)	$Cl(1) \rightarrow O(21)$ 1.37 (2)
$(\Delta \sigma)_{max}$	0.001	Cl(1)-O(31) 1.47 (1)	C(1) - O(41) = 1.28(1)
Max. height in final ΔF map (e Å ⁻³)	0.629		
Error in an observation of unit weight	2.86	O(11) - C(1) - O(21) = 109.0 (7)	O(21) - O(31) = 109.2 (8)
Secondary-extinction coefficient	7.11 (1) × 10 ⁻⁷ (Zachariasen, 1963)	O(11)-Cl(1)-O(31) 107.5 (6	O(21) - O(41) = O(41) = 106(11)
Sources of atomic scattering factors	International Tables for X-ray Crystallography (1974, Vol. IV, Table 224)	O(11)—Ck(1)—O(41) 115·6 (9) $O(31)$ — $Cl(1)$ — $O(41)$ 109-9 (8)
Commutes used	Table 2.2A)	Hydrogen bond	
Computer used	MICTOVAX II	N(2)—H(20) 0.972 (5)	O(31)N(2) 2.935 (9)
rrograms used	<i>SHELX</i> 586 (Sheldrick, 1986) <i>VAX/SDP</i> (Frenz, 1978)	O(31)—H(20) 2·117 (8) O(31')—H(20) 1·80 (1)	O(31') - N(2) = 2.77(1)

N(2)-H(20)-O(31) 140.8 (5)

Table 2. Positional and equivalent isotropic thermal parameters $U_{eq}(Å^2)$

 $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	х	r	z	U_{ra}
Cu	0.500	0.12652 (9)	0-250	0.0488 (7)
Ligand				
S	0.3937(1)	0.0024 (1)	0.3117(2)	0.0528 (8)
N(1)	0.3578 (4)	0.1395 (3)	0.0886 (5)	0.042 (2)
N(2)	0.1916 (4)	0.1041 (3)	-0.0716 (6)	0.046 (3)
C(1)	0.3227 (5)	0.1788 (4)	-0.0487 (7)	0.044 (3)
C(2)	0.3755 (6)	0.2339 (4)	-0.0902 (8)	0.061 (4)
C(3)	0.3196 (6)	0.2615 (4)	-0.2374 (8)	0.070 (4)
C(4)	0.2163 (6)	0.2365 (5)	-0.3382 (8)	0.068 (4)
C(5)	0.1649 (6)	0.1836 (5)	-0.2971 (8)	0.060 (4)
C(6)	0.2200 (5)	0.1559 (4)	-0.1490 (7)	0.046 (3)
C(7)	0.2751 (5)	0.0967 (4)	0.0694 (7)	0.042 (3)
C(8)	0.2684 (5)	0.0471 (4)	0.1866 (7)	0.055 (4)
C(9)	0.3970 (5)	- 0.0656 (4)	0.1780 (8)	0.070 (4)
C(10)	0.500	-0.1103 (7)	0.250	0.098 (7)
Perchlor	ate*			
Cl(1)	0.4916 (3)	0.4464 (2)	0.6812(4)	4.45 (7)
oùi	0.3850 (7)	0.4305 (6)	0.634(1)	6.9 (2)
O(21)	0.5199 (9)	0.4165 (8)	0.578 (1)	8.2 (3)
O(31)	0.5032 (8)	0.5298 (5)	0.684(1)	5.7(2)
O(41)	0.558 (1)	0.4184 (9)	0.810 (2)	8.8 (4)

* Atoms refined isotropically and with occupation factors of 0.5.

angles in Table 3.* A SCHAKAL (Keller, 1988) plot of the molecule is shown in Fig. 1, a stereoview of the unit cell in Fig. 2.

* Lists of structure factors, H-atom positions, bond distances and angles, torsion angles, least-squares planes and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54029 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Symmetry operator: (i) -x, y, -0.5 - z.

N(2)-H(20)-O(31) 178-3 (5)

Fig. 1. View of the molecule with the atom-labelling scheme.

Fig. 2. Stereoview of the unit cell. **b** is vertical, **a** is horizontal and **c** is in the plane of the paper.

Related literature. The structure determination is part of our studies of transition-metal complexes derived from potentially quadridentate NSSN ligands (Castiñerias, Hiller, Strähle, Paredes & Sordo, 1985; Castiñeiras, Carballo, Bermejo, Gayoso, Molleda, Hiller & Strähle, 1988: Castiñeiras, Carballo, Hiller, Montero, Pena & Strähle, 1990; Castiñeiras, Hiller, Strähle, Carballo, Bermejo & Gayoso, 1990; Castiñeiras, Carballo, Hiller & Strähle, 1990a,b, 1991; Hiller, Strähle, Castiñeiras, Carballo, Bermejo & Gavoso, 1990).

The structural parameters of $[Cu(BBDHP)]ClO_4$ can also be compared with those found in $[Cu(BBDHP)](PF_6)_{0.66}(BF_4)_{0.34}$ (Schilstra, Birker, Verschoor & Reedijk, 1982).

We thank the CICYT (Spain) for financial support (Project PS88-0051).

References

CASTIÑEIRAS, A., CARBALLO, R., BERMEJO, M. R., GAYOSO, M., MOLLEDA, C., HILLER, W. & STRÄHLE, J. (1988). Z. Kristallogr. 185, 381.

- CASTIÑEIRAS, A., CARBALLO, R., HILLER, W., MONTERO, C. V., PENA, C. & STRÄHLE, J. (1990). Acta Cryst. A47, C-211.
- CASTIÑEIRAS, A., CARBALLO, R., HILLER, W. & STRÄHLE, J. (1990a). Z. Kristallogr. 195, 251-259.
- CASTIÑEIRAS, A., CARBALLO, R., HILLER, W. & STRÄHLE, J. (1990b). Acta Cryst. C46, 1739–1741.
- CASTIÑEIRAS, A., CARBALLO, R., HILLER, W. & STRÄHLE, J. (1991). Acta Cryst. C47. In the press.
- CASTIÑEIRAS, A., HILLER, W., STRÄHLE, J., CARBALLO, R., BERMEJO, M. R. & GAYOSO, M. (1990). Z. Naturforsch. Teil B, 45, 1267–1272.
- Castiñeiras, A., Hiller, W., Strähle, J., Paredes, M. V. & Sordo, J. (1985). Acta Cryst. C41, 41-43.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press.
- Hiller, W., Strähle, J., Castiñeiras, A., Carballo, R., Bermejo, M. R. & Gayoso, M. (1990). An. Quím. 86, 506-511.
- KELLER, E. (1988). SCHAKAL. A program for plotting molecular and crystal structures. Univ. of Freiburg, Germany.
- SCHILSTRA, M. J., BIRKER, P. J. M. W. L., VERSCHOOR, G. C. & REEDIJK, J. (1982). Inorg. Chem. 21, 2637–2644.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1991). C47, 1738–1740

Structure of Dichloro(iodo)bis(triphenylphosphine oxide)thallium(III) at 223 K

BY A. CASTIÑEIRAS,* M. R. BERMEJO AND A. GARCIA-DEIBE

Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

AND W. HILLER

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Germany

(Received 5 December 1990; accepted 21 February 1991)

Abstract. [Tl(Cl)₂(I){P(C₆H₅)O}₂], $M_r = 958 \cdot 77$, monoclinic, $P2_1/c$, $a = 14 \cdot 738$ (1), $b = 14 \cdot 466$ (6), $c = 17 \cdot 194$ (1) Å, $\beta = 107 \cdot 98$ (1)°, $V = 3486 \cdot 7$ Å³, Z = 4, $D_x = 1 \cdot 826$ g cm⁻³, Mo K α , $\lambda = 0 \cdot 70930$ Å, $\mu = 58 \cdot 3$ cm⁻¹, F(000) = 1840, T = 223 K, final R = 0.062for 4967 significant [$I > 3\sigma(I$]] reflections. The structure consists of discrete TlCl₂I(tppo)₂ molecules (tppo = triphenylphosphine oxide) which have a distorted trigonal bipyramidal geometry. The Tl atom is coordinated to two Cl atoms and an I atom in equatorial positions, Tl—Cl = 2.412 (2) and 2.400 (5) Å, and Tl—I = 2.635 (2) Å, and by two

0108-2701/91/081738-03\$03.00

tppo ligands in axial positions, TI-O = 2.38 (2) Å. The crystal structure is isotypic with those of $TIBr_3(tppo)_2$, $TIBr_2I(tppo)_2$, $TIBrI_2(tppo)_2$ and $TICIBrI(tppo)_2$.

Experimental. A yellow single crystal of approximate dimensions $0.30 \times 0.20 \times 0.15$ mm was sealed in a glass fibre. Because the crystals decompose at room temperature all X-ray investigations were performed at 223 K. The structure was solved using direct methods which revealed the positions of all non-H atoms. In the final full-matrix least-squares refinement all non-H atoms were assigned anisotropic temperature parameters, and the calculated

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.